Aspect-Based Sentiment Analysis on Indonesian Presidential Election Using Deep Learning

نویسندگان

چکیده

Pemilihan presiden tahun 2019 merupakan pemilihan yang menjadi perbincangan hangat selama beberapa waktu bahkan orang membicarakan topik ini sejak 2018 di internet. Dalam memprediksi pemenang penelitian sebelumnya telah melakukan terhadap dataset Analisis sentimen berbasis aspek (ABSA) menggunakan algoritma pembelajaran mesin seperti Support Vector Machine (SVM), Naive Bayes (NB), dan K-Nearest Neighbors (KNN) menghasilkan akurasi cukup baik. Penelitian mengusulkan metode deep learning dengan model BERT (Bidirectional Encoder Representation form Transformers) RoBERTa (A Robustly Optimized Pretraining Approach). Hasil menunjukkan bahwa indobenchmark base-indonesian single label classification pada fitur target preprocessing terbaik yaitu sebesar 98.02%. Model indolem tanpa 74.26%. sentiment 93.07%. 94.06%. multi 98.66%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning for Aspect-Based Sentiment Analysis

Sentiment analysis is an important task in natural language understanding and has a wide range of real-world applications. The typical sentiment analysis focus on predicting the positive or negative polarity of the given sentence(s). This task works in the setting that the given text has only one aspect and polarity. A more general and complicated task would be to predict the aspects mentioned ...

متن کامل

An approach for Aspect Based Sentiment Analysis using Deep Learning

In this project, we present a deep learning approach for aspect based sentiment analysis (ABSA). Sentiment analysis is an important task in natural language processing and has a lot of applications in real world. The typical sentiment analysis is a process of classifying opinions expressed in a text as positive, negative or neutral. A more general task would be to predict the sentiments of each...

متن کامل

Modeling and forecasting US presidential election using learning algorithms

The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president’s approval rate, and others are co...

متن کامل

Aspect Specific Sentiment Analysis using Hierarchical Deep Learning

This paper focuses on the problem of aspect-specific sentiment analysis. The goal here is to not only extract aspects of a product or service, but also to identify specific sentiments being expressed about them. Most existing algorithms address this problem by treating aspect extraction and sentiment analysis as separate phases or by enforcing explicit modeling assumptions on how these two phas...

متن کامل

Topic Based Sentiment Analysis Using Deep Learning

In this paper , we tackle Sentiment Analysis conditioned on a Topic in Twitter data using Deep Learning . We propose a 2-tier approach : In the first phase we create our own Word Embeddings and see that they do perform better than state-of-the-art embeddings when used with standard classifiers. We then perform inference on these embeddings to learn more about a word with respect to all the topi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Paradigma (Jakarta)

سال: 2022

ISSN: ['2579-3500', '1410-5063']

DOI: https://doi.org/10.31294/paradigma.v24i2.1415